

Process Tools for Organic Devices

- SID Meeting 2012-

Overview

- Current industry challenges
- System concept proposal
- Introduction of main modules
- Introduction of core process tools
- Summary

Technology Trend

Manufacturing Process ...

	Process Step		
Process Type	EL Coating	Cathode Deposition	Encapsulation
Today	Vacuum	Vacuum	Ambient / Vacuum
Mid-Term	Ambient	Vacuum	Ambient / Vacuum
Long-Term	Ambient	Ambient (?)	Ambient / Vacuum

cost savings are expected from cheaper equipment materials for ambient pressure processes are required

Challenges

Change of focus ...

properties power efficiency, luminescence, brightness, driving voltage

cost materials, equipment investment costs, equipment running costs

manufacturing process has been widely stabilized; manufacturers are seeking for solutions to reduce manufacturing costs

Challenges

Cost saving potentials ...

Challenges

Equipment ...

vacuum

- high running costs
- scale up problems for larger substrates
- high investment costs
- low material usage
- high foot print (cleanroom)

ambient

- low running costs
- almost unlimited in substrate size
- low to medium investment costs
- high material usage
- small foot print

ambient process equipment allows cost savings

Challenges

Low yield due to particle contamination ...

developed specifically for the demands of the OLED industry

HPL membrane (in-house development) ensures cleanroom class < 1

qualified by the Fraunhofer Institute for Manufacturing Engineering

featuring proprietary HPL technology

systems are designed to integrate 3rd party process and handling tools

System Proposal

Main features

- Advanced coating technology (slot-die coating) to increase material yield
- Cleanroom class 1 environment to minimize particle effects
- Coating modules for water based and non-water based materials
- Vacuum cluster tool for organic and metal deposition
- Seal encapsulation module
- Tracking & Tracing (for each substrate a complete history log is created)
- From Process development to production scale
- Extensibility to increase tact time and add future process modules

System Proposal

Material Flow

Module A - Ambient Coating

Module A: Cleanroom Class 1, Cleaning, Coating, Curing

Module B: Cleanroom Class 1, Cleaning, Coating, Curing

Module C: Vacuum Coating

Module D: Cleanrom Class 100; encapsulation

Module A

Coating under Cleanroom Class 1 ambient conditions

- Cleanroom Class Level <10
- Integrated Slot-Die Coater
- Vacuum hotplates
- UV-Cleaner
- Robot on linear track

Module B

Coating under Cleanroom Class 1 inert conditions

Module B

Coating under Cleanroom Class 1 inert conditions

Main Features

- Cleanroom Class Level <1
- Inert Conditions
- Integrated Twin-Head Slot-Die Coater
- EBR-Tool
- Robot on linear track

Module D

Encapsulation

Main Features

- Inert Conditions
- Vacuum Oven for inital Drying
- UV-Cleaning
- Getter Dispense Platform
- Vacuum Lamination

Process Tools

Slot-Die Coater...

 $8^{\prime\prime}$ glass substrate; plasma treated Wet film thickness circa $8~\mu m$ Dry film thickness 75-85nm

Cross die head uniformity (top-bottom) +/- 1-2nm Cross coating width uniformity (left-right) +/- 4-5nm

Process Tools

Edge bead removal...

minimizing trailing edge and leading edge effects of slot-de coaters

automatic edge detection

programmable smooth-jet nozzle

no heat transfer or mechnical damage to substrate

Process Tools

Vacuum hotplates

temperature range temperature uniformity vacuum level soft bake function process modes 40°C – 250°C

± 1%

10-2 mbar

pins height adjustable in 20 μm steps

ambient pressure bake

vacuum bake

under-pressure purge bake

no temperature shock; no warping

highly uniform and reproducable curing results

Process Tools

Getter Dispense Platform...

integrated process platform

cover glass auto-alignment

up to 4 different process heads can be mounted (ODF capability)

Process Tools

Vacuum Lamination...

process modes non-contact gas pressurised with decompress function

mechanical press with decompress function

alignment automatic glass to glass alignment

UV-mask masks with optical filter to protect the organics from high intensity UV

vacuum level 10-² mbar

UV-source high intensity UV-source with Fe doping (up to 480 mW/cm²); URS reflector

Summary

- increase material yield due to advanced coating techniques
- elimination of particle effects on device performance due to laminar flow
- extensibility for future process modules
- system concept is easy to scale-up (from R&D up to production)
- full "tracking & tracing" for quality control and process improvement

Thank you for your attention

