Liquid Optically Clear Adhesive for Display Applications

Daniel Lu, PhD
Technical Director
Henkel Corporation

LOCTITE® Liquid Optically Clear Adhesives (LOCA)

Benefits of LOCA

- Improving the viewing experience
- Increasing the display ruggedness
- **Extending the battery life**

Henkel Light Curing Technology

- +40 year experience
- Large global business growing at 15-20% per year
- Broadest portfolio of light curing chemistries
 - Acrylated urethanes
- Cyanoacrylates

Epoxies

Anaerobics

Silicones

- PSAs
- Total solution provider
 - Best in class technical service
 - Technology leader in light curing adhesives
 - Technology leader in dispensing and curing equipment
- LOCA specifics
 - Key Product Development centers:
 - Shanghai, China
 - Isogo, Japan
 - Rocky Hill, CT
 - Manufacturing Yantai, China

Typical LOCA Process Flow

Typical Requirements for LOCAs

Processing

- Fast flow and fast curing
- Control overflow

Optical Performance

- Optically clear and particle free
- Refractive index
- Optical property: Transmittance >99%; Haze <0.5%; Yellowness (b*<1)

Mechanical property

Low shrinkage, low modulus, low hardness, high elongation

Reliability

- No degradation of performance after:
 - HTHH (65C/90%RH, 85C/85%RH)
 - high temp aging (85C or 95C)
 - Low temp aging
 - UV aging
 - Thermal cycling or thermal shock

Henkel LOCA Chemistries

■ Acrylate Chemistry (319X)

- Relatively fast curing
- Maintain good optical performance under display reliability conditions
- Desirable RI (1.48-1.52)
- Strong adhesion to various substrates
- Shadow cure with heat or primer

Radicals I. could be generated via:

1) Light; 2) Thermal; 3) Oxidation-Reduction...

Henkel LOCA Chemistries

☐ Silicone Chemistry (519X)

- Good optical performance
- Can potentially maintain good optical performance under harsher condition
- Very low curing shrinkage (<1%)
- Non-thermal shadow curing capability (moisture curing)

Loctite[®] LOCA

Loctite® LOCA Technical Data

	Loctite [®] 3192	Loctite [®] 3193*	Loctite [®] 3195	Loctite® 3195DM	Loctite® 3196	Loctite® 5192	Loctite® 5192DM
Chemistry	Acrylic	Acrylic	Acrylic	Acrylic	Acrylic	Silicone	Silicone
Curing Method	UV + heat	UV	UV	UV	UV	UV / Moisture	UV
Viscosity (cPs @ 25°C)	4,500	3,000	3,500	40,000	3,600	4000	47,000
Shore Hardness	0050	0060	0025	0050	0011	0071	0030
Elongation	> 70%	> 800%	> 150%	> 100%	> 200%	> 135%	> 150%
Refractive Index	1.49	1.48	1.51	1.51	1.51	1.41	1.41
Transmittance (%)	99.00	99.10	98.90	98.90	99.70	99.00	99.30
Shrinkage (% by Volume)	<3	<3	1.6	1.6	1.6	0.55	<2
Adhesion on Glass (MPa)	1.0	1.0	1.22	0.91	0.55	0.4	0.64
Yellowness (b*)	0.3	0.3	0.4	0.5	0.2	0.19	0.33
Haze (%)	0.10	0.10	0.07	0.13	0.07	0.04	0.17

^{*} Loctite® 3193 has high peel strength on various plastic substrates [N/mm]: PMMA: 2.4, PC: 2.45, PET: 2.77

LOCAs for Vacuum Assembly

- Why vacuum assembly
 - Driven by cycle time reduction for high yield of bubble-free laminations
- Why is low weight loss of LOCA important?
 - Better adhesive thickness control
 - Shorter cycle time
 - More consistent performance

Performance Vacuum Bonding

■ Weight loss under vacuum

Henkel LOCAs are compatible with ambient and vacuum bonding

Technology Development Highlights

- Shadow Cure
- Improved Reworkability
- LCD Direct Bonding

Shadow Curing Solutions

- Shadow Curing:
 - O UV adhesive cannot be cured under shadow area
 - O Critical issue for LCD direct bonding
- **Solutions:**
 - O UV-heat
 - O UV-moisture
 - O UV-primer
 - Side UV curing

UV-heat Dual Curing

	Loctite 3192	A-2
Chemistry	Acrylic	Acrylic
Curing condition	UV + 1hr @ 80C	UV + 1-2hr @ 60C
Storage	2-8C	-10 ~ -15C

Apply LOCA

Bond the substrates

UV cure viewable area

Heat cure the shadow area

Percent Cure vs. Total Cure Energy

UV-Moisture

Henkel's Unique Solution

Apply LOCA

Bond the substrates

UV cure viewable area

Moisture cure the shadow area

UV-Moisture: Henkel's Unique Solution

- Loctite 5192: UV + moisture
- Unique RT shadow curing solution
- Good adhesion on glass or plastic

	Loctite 5192
Chemistry	Silicone
Curing condition	UV + moisture
Storage	RT

Depth of Cure (Moisture)

The depth of cure by moisture depends on temperature and humidity. The graph below shows the increase in depth of cure with time at $23 \pm 2^{\circ}\text{C} / 50 \pm 5\%$ RH.

Side-Curing of Ultra-low Energy LOCA

Test Set up

- UV curing equipment: LED line cure
- LOCA: A-1
- Substrates: glass with ink
- Process:
 - Laminate two substrates with ink
 - Side curing through the LOCA layer
 - Take apart the substrates
 - · Measure the cured width

LED Line Cure

- Edge curing
- 365 nm Line, P/N 1449337
- Controller, P/N 1447728
- Cable, P/N 1483215

Side-Curing of Ultra-low Energy LOCA

Linear LED intensity 534mW/cm2 (tested by Loctite Radiometer Dosimeter)

Side-Curing of Ultra-low Energy LOCA

Shadow Curing Data

Bondline: 300um

	Cured Width (mm) with irradiation time			
Sample	20s	30s	40s	60s
A-1	5	6	7	7
Competition A	2.5	4.5	5	5.5
Competition B	2.5	4	5	5

A-1 achieves up to 7mm side curing depth

UV + Primer Curing

UV + Primer Curing

- Adhesive spreads to contact primer in the shadow and gets cured
- Primers can cure some acrylic LOCAs in 10-30 min

Primer can cure acrylate LOCAs under shadow area within 30min

Reworkability

☐ Solutions:

- Wire cut + solvent cleaning
- Preferential release: after wire cut, the adhesive residue stays on
 - Glass
 - Polarizer film
- Film-forming LOCA: Adhesive can peeled off as "film"

LCD Direct Bonding: Considerations

Processing:

- Overflow control:
 - Dam:
 - RI match: Very close RI match of dam and fill to ensure no bondline
 - Curing process affects RI

LCD Direct Bonding: Overflow Control

□Overflow control: use of dam LOCA

> Types of Dam:

High viscosity dam

LCD Direct Bonding (TP2): Mura-free

Mura-free

- Reduce the stress imposed on LCD by LOCA
 - Low modulus / low hardness
 - Low curing shrinkage

An example of Mura

LCD Direct Bonding (TP2): Mura-free

Cured Properties - Photorheometry

sample	Shrinkage (linear) (%)	Modulus (x 10 ⁴ Pa)
3196	0.69	2.9
5192	0.38	1.3
A-1	1.5	1.9
A-3	0.69	1.22

LCD Direct Bonding (TP2): Mura-free Optically Clear Gel

Optically Clear Gel

	Gei
Туре	Acrylate
Application	TP1, TP2
Curing condition (Metal halide lamp)	3,000mJ/cm ²
Viscosity (mPa·s)	3,000
Hardness	oo 0(E0)
Elongation (%)	900
Elastic modulus (Pa)	Off the register
RI	1.53
shrinkage	0.5%
Transmittance	99%
b*	0.07

Low Shrinkage and low hardness → MURA free

Summary

- Henkel offers both acrylate and silicone based LOCAs to display markets
- Henkel offers various solutions to address shadow curing, reworkability, and mura-free LCD bonding for next generation display applications

Typical LOCA Process Flow

Henkel Silicones

